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1. Model description

To model SARS-CoV-2 epidemiological dynamics, we have developed an extended SIR model.
The model is (1) age structured, (2) contains vaccinated, unvaccinated, and recovered susceptible
individuals, and (3) allows for the introduction of new viral variants (also referred to as strains).
Therefore, each state variable can now be expressed as a tensor X = X (a, v, q) for state X and age
a, vaccination status v, and strain q. Some rates also depend on these variables. Importantly,
these variables can each have a flexible number of possible values. That is, the default version
of the model has four age classes, but can defined with any given n age groups, including just
one age group for a non-age-structured model. Similarly, for vaccination, v = vy corresponds
to an unvaccinated state and the model supports an arbitrary p number of vaccines, and
likewise for variants an arbitrary m number can be defined. Finally, an arbitrary number of
recovered values can be defined, which functions as ‘quasi-vaccinated’ values which also
provide partial protection against reinfection. Because the length of S is now different than
other states, the matrix M converts between S and other states by summing across strains.

The number of individuals (across age a, vaccination status v, and strain ¢) in each compartment

can then be calculated as sums, e.g. X (a,v,q). By summing only over certain variables, we

a7v7q

can access quantities such as the number of vaccinated infected adults with B.1.1.7, or the number
of recovered children who were infected with the original 2020 circulating strain.

The model also has the flexibility to make any parameter time-varying. After setting the initial
values, there is a framework for specifying the date and the new value for the parameter. This
is used, for example, with mortality rates, which were higher early in the epidemic and then
declined as treatments improved. Similarly, it is possible to calibrate a set of values for a
parameter with specified time periods. This capability is used foremost for social distancing, which
varies considerable throughout the epidemic, but also for parameters like diagnosis rate which are
known to differ throughout epidemic.

In addition, we have a publicly available tool https://covidmodeling.fredhutch.org/ which
has additional documentation and the ability for the user to see the most up to date
projections and explore many variables in the ‘user-adjustable’ page.

2. Model structure The model is expressed as the set of differential equations (where overdot
denotes time derivative),



with states listed inTable S1 and parametersin Table S2,
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A schematic cartoon of the model is provided as Fig S1. In words, this model describes a population
of susceptible individuals S(a, v =vg, ¢), }ho @an become vaccinated S(a, v € vy, . .., vp, ¢) and/or
infected. Infected individuals begin in an exposed state E and after a witing time 7, proceed to
infection as asymptomatic (A1, probability 1 — 7) or symptomatic (P, probability 7). Note that P
is a pre-symptomatic period with waiting time 7, for symptomatic infections. After the pre-
symptomatic period, symptomatic infections are divided into mild (IM, probability m(a)) or
severe (IS, probability 1 — m(a)) infections. Mild infections recover with rate rj;. Asymptomatic
infections have an analogous state A2 from which they recover at rate 4. Severe infections are
defined as those thatlead to hospitalization, H, and possibly death, F. Hospitalized infected recover
atrate r, or die with rate f(a) and it is also possible to die outside the hospital with the same rate.

Infected individuals are diagnosed as COVID-19 cases with a rate Ax(a) that varies by symptom
severity (A (a), Ars (a), A for mild, severe, and hospitalized respectively. Asymptomatic in-
fections are assumed to be diagnosed at a rate proportionally inferior to symptomatic defined by p 4.
Diagnosed individuals move to a set of parallel states, DA1, DA2, DP, DM, DS, DH and DF.
We assume any individual who dies was diagnosed ultimately. That is, the states F' and DF are
combined for the total number of deaths. Diagnosed cases are used for comparing to data and for
lowering transmission among diagnosed (see below).



Recovery is not a separate state, but incorporated into the susceptible state to allow for reinfection
(immunity can be parameterized to be partial or complete). The number of recovered states is also
flexible. For example, information on infecting strain can be retained t o investigate cross-strain
immunity, or vaccination status can be assumed to trump infection in terms of re-infection, or other
possibilities. How individuals move from the infected states to the compartments of S are described
by the Y matrix. Waning immunity, that is moving individuals from the vaccinated and recovered
compartments of S to be newly susceptible, is also possible and is described by the W matrix.

Vaccinations occur by adjusting the status of susceptible (or recovered, because recovered individuals
can still be vaccinated) within S. Infected individuals with new variants can enter the system with
rate uimport(a, q). Note we assume a closed system (conservation of number), meaning this model
could be interpreted as some KC resident visited elsewhere, contracted the variant, and returned
or also that some KC resident left permanently precisely when a newly infected individual entered.
New strains are also defined by their infectivity v, s ( q) ad severity 14, (a, ¢), relative to the aiginal
strain. It is dso possible to set the starting prevalence d different strains in the initial conditions,
which we favor as this is gnerally more straightforward to estimate than the importation rate.

There are several additional model features that adjust the dynamical system, which are detailed in
the following sections.

Table S1. Table of model states.

State | Description Notes

S Susceptible Different length than other states because no infecting strain
E Exposed

Al Asymptomatic 1 Analog to P

A2 Asymptomatic 2 Analog to IM/IS

P Pre-symptomatic

M Infected (mild)

IS Infected (serious)

H Hospitalized

F Dead Assumed diagnosed after death

DA1 | Diagnosed Asymptomatic 1 ~ Analog to DP
DA2 | Diagnosed Asymptomatic 2  Analog to DM/DS
DP Diagnosed Pre-symptomatic

DM | Diagnosed Infected (mild)

DS Diagnosed Infected (serious)

DH | Diagnosed Hospitalized

DF Diagnosed Dead




Force of infection.

The force d infection Xa, v, gq) governing transmission dpends on the state of the transmitting
individual (e.g. asymptomatic transmission is less likely, certain variants are more infectious,
ertain ages interact less). It dso cpends on vaccination and the time-dependent reduction in contacts
mediated by social/physical distancing o(a).

Ma,v,q) =[1 — o(a))(1 = VEsusc (v, q))r(a)
Cla) x (1 - VEnr(v,0)8*[1 - o(a)] Y BxX(a,v,q)/N(a) @

Xex

where X = {Al1, A2, P,IM,IS,H,DA1,DA2, DP, DM, DS, DH} is the set of all potentially
infectious states. Naturally, susceptible, exposed, recovered, and deceased individuals also do not
contribute to ongoing infection.The key parameter for infection is 5, the base rate of transmission,
which is further modified by state-specific transmission rates, 541, 542, Bp, B, Bs, Brr. Note it is
assumed that hospitalized individuals do not contribute to transmission (8g = 0). For the diagnosed
states, the effect of reducing interactions upon being diagnosed is handled by multiplying the state-
specific Sx by the reduction in transmission due to diagnosis, Sp. Both 5% and [p are calibrated
parameters.

The model uses an empirically derived contact matrix C(a) that parameterizes the probability of in-
teractions between transmitting and exposed individuals in different age groups. The contact matrix
is assembled from those specifying interactions from different locations (Supplementary Table 3),
and a location-specific social distancing parameter can also be specified. Note that these location-
specific social distancing parameters are scalars and not age-stratified.

C(a) :(1 - Uschool)cschool(a) + (1 — Uhome)chome(a) 3)
+ (1 - Uwork)cwork(a) + (1 - Uother)cother(a)

Transmission is further affected by (a) the relative age-specific susceptibility. The reduction in
transmission due to social distancing is handled by the o(a), which varies between 0 and 1 and is
also age-specific (i.e., the more susceptible oldest age group can have a higher value for social dis-
tancing than younger age groups). It is assumed that social distancing affects both transmission and
susceptibility, thus it is applied to both sides of the contact matrix C(a). The location-specific social
distancing parameters (0 school> Thomes Twork> and Toeher) reduce only interactions corresponding to
that location in the contact matrix, for example due to the closing of schools.

Dynamic social distancing. We include a time-varying, age-stratified vector o(a,t) that governs
social distancing (non-pharmaceutical interventions) including reduced contacts through personal
choices and/or mandated partial lockdowns, as well as reductions in exposure contacts due to mask
wearing, physical distancing, capacity limitations, vaccination requirements, etc. o (a, t) varies from
0, indicating pre-pandemic levels of societal interactivity and no masking, to 1, indicating complete
lockdown with no interactions. o(a,t), along with reductions in the susceptible population due




to infection or vaccination, is the main driver of R fective and therefore epidemic peaks and de-
clines.

After the calibration period, the issue is how to set o(a, t) for forward simulation into the future, as
o(a,t) is changing throughtime in response to humanbehavior. We use dynamical social distancing
based on a specified threshold, such as the current diagnosed cases or hospitalizations or some com-
bination. The threshold is a flexible, user-specified function, and thus can be based on government
criteria for implementingrestrictions, such as weekly or bi-weekly case or hospitialization numbers.
This function is parameterized by the following values: the maximum 7},,x and minimum 7}y
thresholds for increasing or decreasing restrictions (corresponding to changing o), the period 7 over
which the threshold is calculated, the restricted and released social distancing values opax(a) and
Omin» and the increment o, by which to change o when releasing restrictions. Thus we have

Umax(a) ZT T > Thax
O'(CL, t) = O'(CL, t) — Oinc Z-,— T < Thin (4)
Omin O'(CL, t) — Oinc < Omin

where the sum of the threshold metric(s) ) T is taken over time period 7. Based on local policy
for decision making, this is set at 7 = 1 week intervals in the current simulation. Thus, for example,
the system triggers increased restrictions if the weekly number of hospitalizations rises over the
max threshold and distancing immediately becomes oy,ax(a) which is age-variable: 70% of pre-
pandemic levels in non-seniors and 50% in seniors. Then, once hospitalizations drop below the
release threshold T1yin, 10% of the distancing is removed every 7 weeks until reaching the minimum
social distancing omiy. This value is not necessarily zero because we expect persistent features such
as masking, work from home and avoidance of large social gatherings will continue to limit the
number of interpersonal contacts relative to pre-pandemiclevels.

Vaccination mechanisms. Original COVID-19 vaccine efficacy trials measured reductionsin symp-
tomatic disease. Therefore, it is unclear whether reductions in disease were mediated by totally
prevented infections, or rather infections that were more likely to be asymptomatic. Therefore, we
include the possibility of vaccines that work by several mechanisms and include three parameters
controlling the effect of vaccination, VEgusc, VEsymp, VEINE. They are all vectors, so that if
there are multiple vaccines defined, they can all have unique vaccine effectivenesses, likewise for
any recovered classes. Vaccine effectivenesses are also strain-specific. The vaccine can completely
block infection and reduce the number of vaccinated individuals that are susceptible by some frac-
tion (VEgusc), and thus modifies the left-hand side of the contact matrix, affecting susceptibility.
Or, it can block symptomatic disease in individuals who are infected despite vaccination (VEgywmp),
altering p which controls the proportion of symptomatic and asymptomatic infections. Finally, it can
decrease the possibility of onward transmission in individuals who are infected despite vaccination
(VEINF), and thus it modifies the right-handside of the contact matrix, altering 5*, thereby reducing
transmission. Each vaccine efficacy ranges from 0-1. Furthermore, there is an additional vaccine
eficacy, that against hospitalization (i.e. severe disease), conditional on being infected, VEg.

Vaccination rollout. The key parameters that govern vaccination distribution are the vaccination
rate, V;.qte, the vaccination distribution, Vg, the vaccination coverage limit, Veoperage, and the
vaccination priority, Vpriority. The vaccination rate is the numberof vaccines distributed per day and




is set per vaccine. The vaccination distribution describes what percentage of vaccines are distributed to
each age group. This can be set proportional to the percentage of the population for an equal
distribution or can be used to prioritize certain age groups. For example, the initial vaccine rollout was
targeted primarily at the elderly, then adults, and finally certain segments of the youngest age group.
The vaccination coverage describes the upper limit of coverage to apply. It is applied per age group.
The vaccination priority parameter is a vector of age groups, and describes the order to reallocate
available vaccines if one or more of the age groups has reached the coverage limit. All of these
parameters can change throughoutthe vaccine rollout, i.e. to increase or decrease the doses available,
using the standard temporal parameter framework.

Both susceptible and recovered individuals are eligible for vaccination, and are applied proportion-ally
While in theory individuals in the infected classes could be vaccinated, this is not implemented in the
model, and this follows advice to not be vaccinated while currently ill with COVID. The V matrix
describes which states are eligible for vaccination, as there can be a variable number of recovered
states defined for the model, as well as what proportionof the total V' ;4 doses available are for each
vaccine.

3. King County model calibration.

Data. The model outputs were calibrated to three corresponding cumaltive metrics in King County WA:
diagnosed cases, hospital admissions, and deaths. Thus corresponding to the cummlative values for the
following states cases = (DA1 + DA2 + DP + DM + DS + DH), hosptializations = (H + DH),
deaths = (F + DF'). Each metric was tracked by age, which we consolidated into the 4 age groups a, so
that calibration was performed against 12 metrics total.

Due to effects of weekends and weekdays, some noise in the data, and the tendency of the daily time
series to be auto-correlated, we took a 7 day smoothed average of 3 days before and after the day of
interest, and then used weekly values of the metrics to calibrate against (thatis 1 value every 7 days).
Because the metrics were on very different scales, for example with many more cases than deaths or
hospitalizations and differences across age classes, we normalized the metrics. F or each of the 12
metric time series, we divided by its mean, and applied the same procedure to the model output,also
normalizing by the mean of the data metrics.

Algorithm. We used an Approximate Bayesian Computing (ABC) algorithm implemented in the
EasyABC R package using the ABC rejection function. This algorithm samples from the prior
parameter distributions, runs the model to calculate the outputs, then calculates the distance between the
model outputs and the data metrics. Because we already normalized the metrics, we used a simple
Euclidean distance to select the 100 best fitting parameter sets. These formed the parameter posterior
distributions, and we used this set of parameterizations in the simulations to incorporate parameter
uncertainty

Calibrated parameters. The model alibration was performed in two stages. An initial alibration was
performed for the initial epidemic period, where the date of the initial ase ¢, was a alibrated parameter,
and the nodel was alibrated to data through April 30, 2020. The following parameters were alibrated: 5%,
Bp>to, o(a), Ny (a), &g (a), pa(a), m(a). All parameters were given uniform prior distributions based
on the best available data (either King County WA data or published studies). W e obtained 100
parameterizations which we used for the posterior distributions of the parameters. We performed a
second calibration for the epidemic state just before the simulation




period, using data from April 1, 2021 through June 15, 2021. In order to retain the initial period
parameterizations for 8*, Sp, and m(a), we used the emprical posterior distribtion from the inital
period calibration as the prior distribution for the final period c alibration. We performed the final
period calibration with uniform priors for the following parameters: o(a)[1], o(a)[2], Ara(a),
Ars(a), pa(a), where o(a)[1] was for the period April 1, 2021 through April 24, 2021, and o (a)|[2]
was for the period April 25, 2021 through June 15, 2021, in order to fit the increase and decline
in cases during the calibration period. During both calibrations the o400 parameter was set to 1,
reflecting the fact that schools were closed. Results presented in Fig S2, S3, S4 and S5.

4. Initial conditions.

Cumulative incidence by age (ci,) and current prevalence on June 1st, 2021 are back-calculated (see
next section) from hospitalization in King County through July 31st, 2021 vaccination frequency by
age group (fv,) is derived from the CDC. Using this information, we populate all compartments
using the following steps.

1. We subdivide the entire population, by age group (IN,) into three immune classes: “suscepti-
ble” (S,), “vaccinated” (V,), and“recovered” (R,). This gives a total of 12 subpopulations.

2. The total prevalence by variant is set to the back calculated value for overall prevalence. It is
assumed that, of initial infections, 80% are with the Alpha variant and 20% are with Delta.
For each we create a 12x12 next generation matrix and use the normalized eigenvectors to
subdivide the total prevalence by age and immune classes. This gives a total of 24 infected
populations.

3. Each of the 24 infected populations is further subdivided into disease stages (such as symp-
tomatic, diagnosed, hospitalized, etc.) using a quasi-steady state approximation.

All otherinitial populations, such as those correspondingto “waned” immunestates, are assumed to
be zero initially.

Back-calculating infections . Calculation of our initial conditionsrelies on back calculation of infec-
tions from hospitalization data, which we assume to be more consistently reported. We reconstruct
infections by age, x4, from the combination of hospitalizations and non-hospitalized deaths by age,
Ya. We assume that the time from infection to hospitalization is exponentially distributed and fur-
thermore we penalize large differences in x, from one day to the next. We calculate y, by solving
the following regularized system with non-negative least squares.

(ATA + 0 TTT)x, = ATy, /IHR, (5)

The matrix I is a first-orderdifference matrix and the matrix entry A; jrepresents the probability
that an individual infected on day j will become hospitalized on day i. I H R is the infection hospi-
talization rate.
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Fig S1. Model diagram.
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Table S3. Estimated location specific contact matrices making up the contact net-work C(a),
showing the number of contacts in the age group in the first column with the age group in each
TOW.

Cschool Chome
1 0-19 20-49 50-69 70+ 0-19 20-49 50-69 70+
0-19 | 423 0.79 0.48 0.01 2.02 225 0.62 0.20
20-49 | 0.38 0.30 0.06 0.00 1.08 1.49 0.34 0.09
50-69 | 0.47 0.12 0.07 0.01 0.61 0.71 1.04 0.10
70+ | 0.01 0.01 0.02 0.01 0.50 0.45 0.25 0.45

Cwork Cother
1 0-19  20-49  50-69 70+ 0-19 20-49 50-69 70+

0-19 | 0.19 0.61 0.11 0.00 3.15 1.65 0.46 0.08
20-49 | 0.29 4.74 0.89 0.00 0.79 292 0.83 0.13
50-69 | 0.11 1.83 0.59 0.00 045 1.70 1.29 0.24

70+ | 0.00 0.00 0.00 0.00 0.20 0.65 0.61 0.29

Daily Cases
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— 20-49 o validation
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Fig S2. The 100 parameterizations shown against data for diagnosed cases (points) by age group
for the calibration period.
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Fig S4. The 100 parameterizations shown against data for deaths (points) by age group for the
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Fig S5. Posterior distributionsfor the calibrated parameters showing the distributionof the 100
parameterizations retained.
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6. Additional results
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Fig S7. Cumulative hospitalizations by vaccination status
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this age group. Boxplots show median and IQR based on 100 simulations. Note, that expanded
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vaccination always results in reduction of hospitalizations or shorter time under elevated social
distancing or both.
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group. Boxplots show median and IQR based on 100 simulations. Note, that expanded vaccination
always results in reduction of the number of hospitalizations.
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Fig S11. Simulations with different social distancing ranges. Simulations with reactive social distancing
using ranges with: A) Different levels of minimum social distancing (SDmin) for the same maximum social
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minimum social distancing (SDmin=10%). Results show mean values based on 100 simulations.

22



>

)

No Waning
2 8000 — = Waning
il
=]
[}
N
©
= ]
£ 6000
7]
(=]
=
g
B 4000 —
=
£
=,
O —
c 2000
v
D
=
o —
Contactness
at schools 0% 50% 75% 100% 0% 50% 75% 100% 0% 50% 75% 100%
\kl'izcscisr:?;it:yr;g:s Oct 2021 Jan 2022 No vaccination of kids 5-11 years
[ ] L J L4 .
B) No Waning
[ - 3
1000 ° - ol T ’ . Waning
®» o ' T i ] T : - ” :
S i i : F 4 3 ; : , 5 s
S 800 - = : i 1 : ' :~ | ' '
© i i : i ;
= s B B . g B 0 B E
«
= 600 — . : T e | . : P g . ; i
& e b T P el ® T N IE-NEa
Q T :,—~-+E: ;..-h,_LIE:
= - : i - 4 e i
x 400 - | H L e B E = B E
3 E = : ® FE
a il ® i s ] g
200 - s Ui 25
| H L
@ s e ®
L 3 () o
o 4 + 4l s @ 5 o i
Contactness
at schools 0% 50% 5% 100% 0% 50% 75% 100% 0% 50% 75% 100%
Vaccination of Oct 2021 Jan 2022 No vaccination of kids 5-11 years

kids 5-11 years

C) 100 4

,_ ... T e + -r ae : " =a No Waning
. E - | ! | H Waning
~1 g B0 gBHN g RO

60 — 1) i : i i

i & + = - = ==
40 = = - e
Ld i i

= T 0 R -
$
[ ]

R TIRTEANLL.

Contactness
at schools 0% 50% 5% 100% 0% 50% 75% 100% 0% 50% 75% 100%

Vaccination of
kids 5-11 years

Percentage time at maximum SD

Oct 2021 Jan 2022 No vaccination of kids 5-11 years

Fig S12. Effects of efficacy waning. A) Mean cumulative hospitalizations; B) Maximum number of
hospitalized people over the school year and C) Percentage time of the school year under maximum
restricted social distancing (SD) under scenarios assuming waning protection from vaccination and prior
infections as described in Table 2 in the manuscript compared to scenarios without waning.
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